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A Global Collision-Free Path Planning Using Parametric Parabola 
Through Geometry Mapping of Obstacles in Robot Work Space 

Ihn Namgung* 
(Received March 11, 1996) 

In this paper, a new algorithm for palnning collision-free path connecting from start to target 

point is developed using BEzier curve of order two. The control point, i. e. the mid-point of 

quadratic B6zier curve, determines the shape of parabola and constitutes the Control Point 

Space. Interference check between path and obstacles creates image in Control Point Space, and 

this process is difined a Geometry Mapping. After Geometry Mapping of all obstacles, the clear 

area of CPS, an area not occupied by obstacle images, identifies collision-free path. The path 

planning algorithm, heance, transform path planning problem in Euclidian Space to point 

selection problem in CPS. The calculations involved in the algorithm do not require iterative 

procedures and all the formulas of the solution are derived in closed form. A CPS completely 

filled with obstacle images indicates that path planning based on parabola is not possible and 

requires higher order curve with more than one control point. 

Key Words: Robot Path Planning, Geometry Mapping, Robot Task Planning, Collision 

Avoidance 

1. Introduction 

The use of parametric curve for path planning 

was introduced previously (Namgung, 1989), in 

which a collision free path was found in a CPS 

(Control Point Space) generated by a control 

point where two line segments meets. The shape 

of path is then depend on the location of connec- 

tion points, hence it is called a control point. The 

control point was organized in a coordinate 

which defines CPS. The obstacle interference 

check produced images of obstacles in CPS and 

this process of transforming obstacles in Eu- 

clidian Space into images in CPS is defined to be 

GM(Geometry Mapping). In this paper, par- 

ametric quadratic curve, more specifically a 

parabola, is used as a base curve for GM. The 

dimension of CPS is depend on the number of 

control points and the dimension of base curve. A 

path planning using higher order curve requires 
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multiple number of control points which leads 

to a higher dimensional space of CPS, and 

GM requires numerical calculation consequently 

it cannot be handled easily. 

A parametric quadratic curve can be defined by 

three vertices and is on a two-dimension. One 

form of parametric quadratic curve is given by 

B6zier curve of order two, which was utilized in 

this paper. This particular curve greatly simplifies 

GM in calculating the intrference between path 

and obstacles. B6zier(1972) extended the idea of 

approximation of a function to approximation of 

a polygon, in which n + l  vertices of a polygon 

are approximated via the Bernstein basis. It is also 

called a Bernstein-B6zier polynomial curve. B6zier 

curve of order two is a parabola and it approxi- 

mates a triangle formed gy three vertices, see Fig. 

1. 

R (S) = ( 1 -  s) 2R0+2s (1 - s) R1 + s2R2 

= ( R 0 -  2R1 + R2) $2+2 (,~1 - -  R0) s 

+ R0 (1) 

The valid interval of the parameter s is O<_s _< 

1 where s--Ocorresponds to poiht RO and s = l  
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corresponds to point R2. One should note that in 

Fig. 1 the lines E'0R~ and R~R2 are tangents to the 

curve at points /~o and t'72 respecitively. The 

location of vertex /?1 detemines the shape of the 

parabola. The parametric parabola derived above 

has special meaning in developing collision-free 

paths in which R0, /?2 and /?~ are viewed as start 

point (S) ,  target po in t (T )  and control point 

(Q), Fig. 1. 

2. Work Space Determination for 
Parabolic Control Point Space 

In this sectioin, the formulation of a parametric 

parabola including the method for setting the 

ranges of parameters is explained. In Fig. 2 

AWS(Actual Woirk Space) is defined to be the 

actual robot work space bounded by vertices w~, 

we, w3, and w4 and QWS(Quadratic Work Space) 

is a hypothetical work space defined to enclose 

AWS. It is so name since the generating curve of 

QWS is quadratic curve. The size of QWS does 

not matter as long as it contains AWS. It is 

important to note the sole purpose for getting 

QWS is to define a uniform range of parameter p, 

namely 0 to l(or p,~x), regardless of angle 0. 

Once QWS is obtained, the outside of AWS 

should be regarded as obstacle in order to prevent 

paths passing through AWS. 

The defining vertices of quadratic curve is 

specified by a start point, S, and a target point, T, 

a center point c, a mid point of ST and remaining 

vertex Q which controls the shape of curve. The 

points S, T and Q form a triangle and R(s) is a 

collision free path connecting points S and T. 

R ( s ) = ( S - 2 Q +  T ) s 2 + 2 ( Q - S ) s + S  (2) 

The location of Q is defined by two parameters, 

and p in polar coordinate. The parameter p 

defines a bundle of parabolas along the line CQ,~ax 

and the parameter 0 defines families of parabola 

in angular direction. The curve R(s)* is a BEzier 

curve defined by triangle S Q , ~  T and passes the 

boundary of the work space QWS. The range of 0 

spans from 0 ~ to 360 ~ and the range of pvaries 

from 0 to pm~x. The unknown parameter range 

Pm~x can be obtained from QWS. 

This sectioin addresses the method of finding 

the point Qmax which defines the largest parabola 

within the work space, QWS. When control point 

coincides with centre point parabola degenerates 

to line ST, accoringly p =0. The QWS shown by 

circle in Fig. 2 encloses all of defining vertices of 

AWS where point W3 is farthest away from centre 

point C and it defines the smallest QWS. Exact 

calculation of Pmax of parabola, R . . . .  is time 

consuming since Rmax and the circle is just in 

contact (both equations are in second order). 

Here an approximation of QWS indicated as 

QWS* is used instead. Note from Eq. (l) when s 

I 

S C, p=0 T 

Fig, 1 Parametric representation of parabola(BEzier 
curve of order two) 

9WS 

Fig. 2 Construction of Quadratic Work Space and 
bundle of parabolas 
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=0.5,  the parabola pass through bisection point 
of  line segment CQm~ denoted by R*. in other 

word Qm~ can be obtained from R* of  QWS. 

This approximation creates QWS* that is slightly 

larger than circular QWS, see Fig. 2. The circular 

boundary QWS defined by R* should contain 

AWS boundary vertices. This is in fact finding the 

\ ~  Qm~ts,o..) 

, \ \  - 

\ 
' \ ", .  a=~o) 

Fig. 3 Classification of obstacles relative to triangle 

SQm~xT 

i Q..,(O,,p=,,) I /i 
/ ~i :'/ p~ Q~ L2 

/ / ' / '  ! 

7 /T 
C 0" 

Fig. 4 Interference between a bundle of parabola 
and obstacles 

largest distance from centre point to AWS bound- 

ary vertices, for example Wa of Fig. 2. Qmax can be 

obtained using Eq. (2) with s=0.5  and R = R * .  

Q , ~ a x - C = 2 ( R * - C )  (3) 

where C =  ( S + T ) / 2 .  Equation (2) indicates that 

the radius of  circle traced by Qmax is twice the 
radius of circle generated by R*. 

So far extreme radius of QWS is discussed. 

Having calculated IQmax-CI, the origin of local 

coordinate system can be set at C and location of  

Qmax depending on the value of 0 can be comput- 
ed as follows. 

(~ . . . . . .  ~ Q  . . . .  -- e L ,  
..... ] ~  S-S~ ~ T . -  Sx )cos  0 - ( Ty 

- S y ) s i n 0 }  + Cx 

o ..... y : ] Q  .... - c b  
~ l -  ~ ( T , - & ) c o s  O-(Tx 

- Sx) s in0  } + Cy (4) 

Now that the locatioin of  Qrnax can be deter- 

mined for a given value of  0, the bundle of 

parabola can be set along the line CQm~x. 

Q = ( Q , , ~ - C ) p + C  (5) 

Equation (5) can be substitute into Eq. (2) and 

get parabolic  locus defined by parameters s and p. 

R (p,s) =2( C-Qmax)p s2 + 2(Q,~a~ - C)p 

s4  ( T - - S ) x + S  (6) 

3. Intersect ion of  Parabolas  

with an Obstacle  

3.1 Categorization of obstacles 
Obstacle interference of a bundle ,of parabolas 

for a given value of  0 is presented in the next 

section. Actual calculation of obstacle interfer- 

ence can be delayed until categorization of obsta- 

cle is done. Figure 3 shows classificatioin of  

obstacles relative to the triangle SQ,~xT. The 

reason for doing this is to reduce the calculations 

involved in interference check which is much 

more complicated than categorization presented 
below. 

From Fig. 3, number of cases can be observed 
as follows. 

i) Case 1, obstacle is located completely outside 

of triangle SQm~xT, no interference check is neces- 
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say. 

ii) Case 2, obstacle is located completely inside 

of triangle SQm~xT, may return two clear ranges 
o f p .  

iii) Case 3, obstacle intersects line segment ST, 

lower bound of clear range of p is obtained. 

iv) Case 4, obstacle intersect line segment Qm~x 

T or Q,,~x S, upper bound of clear range of p is 

obtained. 

v) Case 5, obstacle intersect both line segment 

ST and Q,~a~ T or Qmax S, no interference check is 

necessary. Bundle of parabolas are completely 

blocked by the obstacle. 
vi) Case 6, obstacle intersect both line segment 

QmaxT and Qm~S, obstacle may be located out- 

side of  parabola. 
The categorization can be done using line inter- 

section between traingle SQmaxT and obstacle 

edges. 

3.2 Interference of  obstacles  and parabola 
Figure 4 shows obstacle and a boundle of  

parabolas. It is clear that the obstacle limits the 

valid range of  parameter p. The maximum range 

of  blocked value of parmeter of p due to interfer- 

ence check with an obstacle requires two different 

kind of  interference calculation. One is a contact 

between path and a vertex of the obstacle and the 

other is a contact between path and an edge of the 

obstacle. For  instance, OB2 in Fig. 4, vertex Pa is 

in contact with parabola Ra(s), and edge P~Pz is 

in contact with parabola R2(s). Because parame- 

ter />2 generates Rz(s) and Pa generates Ra(s), the 

issue is how to calculate/~,  and pa. Addit ionally 

it has to be decided among which of the intervals 

O<--p<-p2, f~<-p<-P.J and pa_<p_<l parabolas 

intersect the obstacle. The categorizatioin de- 

scribed in previous section is used to determine 

the interval in which actual interference occurs. 

The contact between a vertex of obstacle and a 

parabola can be checked by substituting vertex 

point, P, into the left hand side of Eq. (6). 

Eliminate parameter p and solve for s. 

- o . . . . . . .  ) & !  
s = ( C~-- Q . . . .  ~) ( "Ix - Sx) - ( Cx - Q . . . . .  ) ( T y -  S,.) 

(7) 

Parameter s represents a point along the parab- 

ola. Parameter p is obtained by substituting (7) 

into (6) provided that the denominator of Eq. (7) 

does not vanish. 

( P - S ) - ( T  S ) s  
P =  2 s ( 1 - s )  (O ,~ax -C)  (8) 

The parameter p can be calculated by substitut- 

ing either x or y coordinate values and result of 

(7). If both the solutions of  s and p are withing 0 

~<s_<l and 0_<p<_l, contact between vertex P 

and parabola R(s) occurs. The contact between 

an obstacle edge and a parabola ,=an be checked 

by equating equation for edge of obstacle, for 

example PIP~, and parabola  given by Eq.(6). 

( P j -  P,) t + P , = 2 ( C -  Qmax)ps 2 

+ 2 ( O m a ~ - C ) p s  

+ ( T - S ) s + S  (9) 

Parameter t can be eliminated from Eq. (9). 

ApsZ + ( -  A p  + B )  s + C = 0  (10) 

where A = 2 ( Q  . . . . .  - Cx) (PJ ,y-  P,,y) 

- 2 ( O  . . . .  , , -  Cy) (Ps , x -  P,,x) 

B =  ( T y -  Sy) (P j , x -P i , x )  - ( T x -  Sx) 

(P~.,y Pi,y) 

C =  ( S , . -  P,-,,,) ( P j , x -  Pl.,x) - ( S x -  P,, ,)  

(Pj , , , -  P,.y) 

Equation (10) has double roots in s, because 

the parabola is just in contact with the edge of the 

obs tac le  def ined by Pi and p3. Thus the di- 

scriminant of  Eq. (10) will vanish: 

A'ep 2 -  2 A  ( B  + 2 C) p + B2=0  (11) 

Equation (1 l) may have two different solutions 

for p as shown in Fig. 5 in which R1 and R2 are 
the corresponding curves. 

t3 + 2C +-2,[-(B-+ C) C (12) 
P A 

Figure 5 revelals that the root with bigger value is 

the possible valid solution due to the fact that the 

parameter value s at contact point for smaller 
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value of  p is always outside the range. The  corre- 

sponding double  root s can be obtained by sub- 

stituting bigger value of  p into Eq. (10). 

C -= ,:' ( B ~--C ) L7 
. . . . .  , , :: . . . . .  (13) s B+2C• 

where A ,  t~' and C are defined in Eq. (10). The 

parameter t can now be calculated from Eq. (9) 

provided that the denomina tor  does not vanish, i f  

the values of  p,  s and t are all within zero and 

one, a contact occurs. If edge of  obstacle is paral- 

lel to the line CQ, the denomina tor  of  Eq. (12) 

vanishes and p becomes infinite. 

When consider ing a contact of  a vertex or  an 

edge with parabolas,  singular cases associated 

with the values of  p and s, such as s = 0 ,  s :  ~-~ 

and p or s being indeterminale may arise. If an 

edge o f  an obstacle under considerat ion lies on 

the line ST, coefficients B and C vanish from Eq. 

(10), thus p becomes zero from Eq. (12) and s 

becomes indeterminate from Eq. (13). If  an edge 

under consideratin is parallel to CQ, the coeffi- 

cient A vanishes from Eq. (10). A simple and 

general method to avoid this situation to compare  

the denomina tor  with the numera tor  o f  Eq. (12) 

beform evaluat ing division. If the numerator  is 

P2 i Qz 
/i'\\ 

1 I ~\ ,;  

i ,,/\ i ,,,{ "\, 

Fig. 5 Two possible cases of contact between a 
and parabola 

line 

QWS boundary 

/ 

: /~ '  ' i  : 

l 
I 

P.H 

1.0 
. . . . . . . .  Jl_ . . . . . . . . . . . . . . . . . . . .  

C, 

to e "  90 ~ I80" 270 ~ 360" e 

Fig. 6 Geometry Mapping of obstacles from Eu- 
clidian Space into parabolic CPS 

less than the denominator ,  p is in the range - 1 < 

p <1  and the d i v i s i o n  s h o u l d  be e v a l u a t e d ,  

otherwise the eva lua t ion  can be skipped. Final ly  

if the discrimant  of  Eq. (10) is greater than zero, 

a negative value of  ( 1 3 + C ) C  freom Eq. (13) 

results. This case produces an imaginary value o f  

p from Eq. (13). This  case arises when an edge 

under considerat ion is located within two lines 

indicated by L~ and Lz and extension of  the edge 

intersects line segment :gT". Such cases can be 

avoided by comput ing  the discriminant  o f  Eq. 

(10). A negative value of  discriminant  indicate no 

further evaluat ion is necessary and intersection 

check need vertex contact  given by Eqs. (7) hnd 

(8). 

3.3 Combined blocked range of parameter 
for construction of obstacle image in 
CPS 

Since the calulat ion of  the intersection between 

an obstacle and bundle  of  parabola  produces 
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blocked range of parameter p, the final blocked 

range of p is union of all blocked ranges of p. 

Figure 6 shows GM produced by the intersection 

of parabolas with two obstacles, where 0* indi- 

cates the rotation angle defining the family of 

parabola. The ranges of p in which parabolas 

interfere with obstacle OBI and OB2 are 0_<p< 

p~ and Px~P~R3. Thus the clear range o f p  is p 

~<_p_<p., and p~_<.p<l, where Pmax iS set to [. In 

Fig. 6, the dashed line corresponds to 8" and 

values of,o~, p.z and p,~ are plotted accordingly. To 

create whole images of obstacles in parameter 

space, ranges ofp  for different values of 8 have to 

be calculated. Such a precess creates images in 

parabolic CPS as shown in Fig. 6. 

The Geometry Mapping developed above finds 

obstacle interfering ranges of p for a given value 

of 8, hence the mapping is discrete in parameter 8 

and exact in p for that particular value of 8. One 

should note that geometric mapping for the entire 

range of 8 is not necessary because the values of 

0 near 0 ~ and 180" produce sharp parabolas and 

passes near by line segment ST. Any point from 

the clear area of parameter space corresponds to a 

collision-free parabolic path. It is apparent that 

selecting a point that is farthest away from bound- 

aries of all obstacle images gives the safest path. 

The ranges of,o for each different value of 8 are 

compared to determine the widest range of  p, and 

the mid value of that range is selected as the value 

of p. This pair is only an approximation of the 

safest path, since the comparision is made in 

8-direction only. The true safest path can be 

obtained fiom the largest inscribing circle of clear 

area. Figure 6 shown circles C~ and C~, one for 

upside of line ST and the other form down side of 

line St. The circles C~ and C2 are largest one 

inscribing clear area A~ and ,4._,. Hence the center 

point of circles C~ and Cz anre the safest 

collision-free path. 

Search for the safest path may not be necessary 

because any point in the clear area of the parame- 

ter space is already a collision-free parabolic 

path. It is also possible to select the shortest path 

in terms of parabolic path by searching for a 

point from clear area of parabolic CPS. An 

approximation for the shortest path is finding the 

smallest value of O from clear areas of CPS. in 

essence geometric mapping converts the problem 

of" selecting a path in Euclidean space to the 

problem of selecting a point in parameter space, 

which is obviously an easier problem. 

The Geometry Mapping presented so far is 2D 

case, however, the algorithm can be applied to 3D 

case. Note that a quadratic curve is defined by 3 

vertices (S, T, and Q), and a plane can be defined 

by non-collinear 3 vertices. To define a 3D qua- 

dratic curve, an additional parameter is required 

(say q~) to define the skew angle of plane that 

contains S, T. and Q. The parameters qS, p, and 8 

are used to define position of Q and the plane. 

This plane can be treated as a cutting plane of 

obstacles and the images on the cutting plane are 

used for 2D Geometry Mapping. This process 

reduces 3D obstacle into 21) obstacle. 

4. Conclusions and Discussions 

Path planning based on parametric parabola is 

introduced in which obstacles in Euclidean Space 

are mapped into images in Control Point Space. 

A parametric parabola represented by Bfizier 

curve is used in the development of algorthm in 

which end points of parabola correspond to the 

start and target points. The mid-point of parabola 

controls the shape of path. The algorthm maps 

obstacle in Euclidean Space into images in para- 

bolic CPS, which is defined to be a Geometry 

Mapping, and changes path planning problem in 

Euclidian Space into point selection problem in 

parabolic CPS. The algorithm involves no inter- 

ativecalculation in doing GM. All cases including 

singularity have been identified by geometric 

relations and all formulas have been derived in 

closed ti~rm. A clear cut determination of success 

of path planning is indicated by the existence of 

free space of parabolic CPS. A CPS completely 

filled with obstacle images indicates that path is 

not available with parabolic curve and requires 

higher order curve or increased number of control 

points. 
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